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Abstract

Kemp [J. Statist. Plann. Inference 63 (1997), 223-229] studied a discrete
analogue of the normal (Gauss) distribution extending the work of
Dasgupta [Theo. Probab. Appl. 38 (1993), 520-524]. Kemp gives three
characterizations of the discrete normal distribution including the
characterization as the maximum entropy distribution (MED) in the
integers for a given mean and a given variance. We reparametrize this
model and obtain new properties, including two new characterizations.
Moreover, we propose a generalization of this mode! and give several
tables to calculate the associated distribution function and to approach
other discrete distributions.

1. The Discrete Normal Distributiori

Kemp [4] obtained the discrete normal distribution as the maximum
entropy distribution (MED) with support in the integers, with specified
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mean and variance, and by using the Shannon entropy
H(X) = =) p(x)log p(x),

where p(x)=Pr(X = x) is the probability mass function (pmf) for
x=.,-2,-1,0,1,2 ... A similar result can be obtained for the
continuous normal distribution (see, for example, Kapur [3]). The model

obtained by Kemp is

- ;qux(x—I)/z R
plx) = z }\qu(x—l)/z , x=..,-10,1, .., (1)

where A >0 and 0 < g < 1. This model includes Dasgupta’s [2] model

obtained by taking A = ql/ 2 characterized from a Cauchy equation on a

discrete domain. The same pmf was obtained in a different way by
Navarro et al. [6] on a different support and by using reliability
properties. Bowman et al. [1] also obtained several discrete normal
distributions from a discrete analogous to the Pearson family of

distributions.

Model (1) can be reparametrized in a more usual form as

exp{- (x - b)*/20%}

plx) = @ D) , x=..,-101, .., (2)
where
1 logh
T2 log q
a = ++/—1flogq
and
cla, b) = Zexp{w (x - b)*2a?} < .
X=—00

Thue Y is symmetric with regard to & (p(b - x} = p(b + x). for all x) if
and only if. b is an integer or b - 0.5 is an integer. In the last case, X has

a joint median in the interval [b - 0.5, b + 0.5].




A NOTE ON THE DISCRETE NORMAL DISTRIBUTION 231
When b is an integer, we have the following properties.
Proposition 1. If X has p(x) equal to (2), where b is an integer, then
. c(a, b) = c(a),
. E(X)=b,

[

o

3. the unique mode is b,

4, X - b is a discrete normal distribution (verifies (2)),

U

(X - b)2 has a Geometric distribution with support {0,1, 4, 9, ...},

. Var(X) = a%¢' (a)/c(a),

. ‘Yl(X) = 0,

o

-3

3cl@) | cla) .y
ac(@) + R c"(a) - 3,

8. vo(X) =

where p = E(X), o =Var(X), 11(X)=E[X -p)l’l/c® and v5(X) =
- 3+ E[(X - p)*Yot.

Proof. The proofs of 1-5 and 7 are easy. From 1, we have

[=3]

o(a) = ) expl- (x - b)’/2a?)

X=—o0

and by differentiating, we obtain

c'(a) = Z a 3(x - b)? exp{- (x - b?/2a?}

X=—00
and 6 holds. Differentiating again, we have

¢"(a) = Za'ﬁ(x -~ b)* exp{- (x - b)?/2a?}

X ==

-3 i a4 (x - b)Y exp{- (x - 8)%/2a?)

X=—0

mprmd hhawman @ aAldA
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Bowman et al. [1, p. 10] show that 02(1) =1 and y2(1) = 0, but the

proofs are erroneous because the model (2) does not belong to the discrete
Pearson family defined in this paper by

plx)-plx-1) __d-x
plx-1) a + bx + cx®

However, we obtained the following asymptotic results.

Proposition 2. If X has p(x) equal to (2), where b is an integer, then
1. lim,_, c(a)/a = Vo,

2. limg,_,0 Var(a)a? = 1,
3. lim,_,. Y2(a) = 0.

Proof. To obtain 1, we use that

10 1N (/o
- cla) = ” _Ze

2
(x integer) is an approximation for P ¥ 2gy = J2n, where the
- o)

interval's length 1/a — 0. Hence, the condition cla)/a — J2n, implies

c'(a) — V27, and from Proposition 1, Var(a)a® = ac’(a)/c(a) = 1 holds.
Thus, from L'Hospital’s rule ac"(a)/c' (@) - 0 holds and hence, from

Proposition 1, we obtain ya(a) — 0.
These convergencies are very fast and we can approach c¢(a) by v2na

when a > 0.7. However, it is easy to obtain lim,_,o ¢(a) = 1, and hence,

the equality c(a) = Jora does not hold (see Table 1 in Section 3).

In the general case, that is when b is a real number, we obtain the

following properties.

Proposition 3. If X has plx) equal to (2), then

4 de BN — e b IWN snhore hY ic the integer part of b.
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2. c(a, b) = c(a, 1 - b) when 0 < b <1.

3. E(X - b) = o> %C(a, b).

4.If b — 0.5 is an integer, then E(X) = b.
5.1f b - [b] < 0.5, then the unique mode is [bl.

6.If b — [b] > 0.5, then the unique mode is [b] +1.

-

L E((X - b)) = —— a3%c(a, b).

c(a, b)
8. E(X ~b)*) =0 iff [b] = 0, 0.5.
0. B((X - bt yEA(X ~ b = L@, deb) 5 e b)

30 @ 0) ("55 o{a, b)) ¢

Proof. To obtain 1, we use that

=]

cla,b-B) = Y exp(-(x + B] - b’ /20%)

x=-0

[= o]

= Y expl- (v - b)°/20%)

y=—e0
= c(a, b).

The second property is obtained in a similar way.

To obtain 3, we note that

0 =°°(x-b)x_~_2az
Sela,b)= ), Fogexpl- (e - b) f207)

X=—mw

= c(a, b)E(X - b)a®. 3

Property 4 holds when b - 0.5 is an integer since p(b + x) = p(b-x)

for all x.
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Properties 5 and 6 are immediate.
To obtain Property 7 we note that

© 2
Lo )= Y Ehexpl- (v 0 20

X=—C0
= ¢(a, B)E((X - b)*)al. (4)
The proof of Property 8 is similar to that of Property 4.

Finally, Property 9 is obtained from (3) and (4).

Remark 1. Note that from Property 3, if c(a, b) = c(a) holds, then
E(X)=b and hence, Var(X), y1(X) and y(X) can be obtained from

Properties 7, 8 and 9 in the preceding proposition. However, in general,
this equality is not true (see Table 2). However, we have obtained the

following asymptotic results.

Proposition 4. If X has p(x) equal to (2), then
1. lim,_,c(a, b)a = Jem,
2. lim,_,, e, b) = b,
3. lim,_, V(a, b)a® =1,
4. im0 2@, b) = 0,
where p(a, b) = E(X), V(a, b) = Var(X) and y(a, b) = yo(X).
The proof of this proposition is similar to the proof of Proposition 2.

Remark 2. In particular, if @ > 0.7, then c(a, b) = 2ra, Var(X) ~a?
and yo(X)=0 (see Tables 1 and 2). Szablowski [9] obtained exact

expressions for p(a, b) and V(a, b) by using Jacobi Theta functions.

From these expressions he obtained bounds for |p(a, b)—b| and

| Via, b) - a® | when a? > 1/n2.




A NOTE ON THE DISCRETE NORMAL DISTRIBUTION 235

2. Characterizations

In this section we study new characterizations for model (2) from
reliability measures such as the failure rate (hazard function), the mean
residual life or the truncated mean function. First we need a previous

result from Navarro and Ruiz [7].

Proposition 5. If X has a discrete distribution with support
[, %1, %, %1, .} and m(x, y)=E(X|z<X< y) ts the doubly

truncated mean function, then m(xy, %p,1) uniquely determines p(x) by

-1

plx;) = 1+Z?\.k-~;\i_1 +Zr—*1-i";a”i' for all i,
; -

k<i k>t

where

Ao = Fhal T m{ac, x}c+1)'
“m(%p, Xpa1) = X

As a consequence, we have the following characterization for the

discrete normal distribution:

Proposition 6. If X has a discrete distribution with support
{..=1,0,1,..} then p(x) is equal to (2) if, and only i,
/]

mk, k+1) = k+ —+——, forallk,
d+q

where d > 0 and 0 < g < 1.

The most useful characterization for the continuous normal
distribution using reliability measures was obtained in Kotz and
Shanbhag [5]. They characterized the normal distribution by the
relationship

mix) = n + o2r(x), xeR, (5)

where r{x) = f(x)/(1 - F(x)) is the failure rate function and mx) =
E(X|X = x) is the left truncated mean function (which is equivalent to

the mean residual life function E(X - x|X = x) = m(x) - x). Note that
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for the normal distribution neither m{x) nor r{x) has an explicit
expression (both depend on F(x)). Relation (5) can be used to obtain a

graphic plot test for normality. The general way to obtain F from a
relation like m(x) = ¢ + g(x)r(x), was obtained by Ruiz and Navarro [8].

From this result, we obtain the following characterization for model (2).

Proposition 7. If X has a discrete distribution with suppor?
{0 -101, ...}, then p(x) is equal to (2) if, and only if,

m(k) = b + g(R)r(k), forall &,

where

gk +1) = (b - & + g(R)Aa®),
2(0) = Zwo (x - b)qux(x—-l)/z,

2 £ 3
q = e V2% gnd A = q 2,

Note that the relations are different in the continuous case (g = cte)

and the discrete case. In Navarro et al. [6] we obtain a discrete

distribution verifying
mlxp) =+ o2r(xy)
with p(x;) = cq o, =+ o2(1 - g2, ¢ = V2, kR=.,-L01 ..

Thus, the definition of the discrete normal distribution can be extended

by

pf= (k = b)’ 20
pley) - 2R =0 ], ©®
where {x)) verifies -~ <xj <X <¥ <- including both models.

Hence, if X is a discrete normal using definition (6), then aX +b isalsoa
discrete normal distribution. Note that to obtain this last property we

only need xj, = o + Bk
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3. Tables

In this section we present some tables and graphics for the model (2).
From the tables, we obtain the following approximations:

(1) e(a, b) =v2na for a = 0.7
(2) ula, b)=b for a = 0.7
(3) var(a, b) ~a? for @ > 0.7

4) vs(a, E):O for a > 0.7.

However, we note that v;(a, b) depends on b and it is zero only when

b=0 or b=0.5 (see Table 2). Moreover, it is easy to show that
p(x, a, b) = p(x +n,a, b+n) for all integers n and that p(x, @, b) =

pl-x,a,1-b)for 0<b<l.

Table 1. Values for c(a, b) and o*(a, b) when b is an integer

(see Proposition 1)

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e(a) |{1.0000]1.00001.0077{1.0879|1.2713| 1.5064| 1.7549 | 2.0053 | 2.2560

0.2(0) 0.00 | 000 | 001 | 0.08 | 0.22 | 0.35 | 049 | 0.64 | 0.81

c(a) |2.5066(5.0133|7.5199]10.026] 12.533 15.039|17.546 20.053 | 22.559

0‘2(0) 1 4 9 16 25 36 49 64 81

e(a) |25.066(27.5673]30.079|32.586| 35.093 | 37.59950.133 | 75.199 125.33

02(a) 100 121 144 169 196 225 400 900 | 2500
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integer (@ =1, 0.1)

b), Ma, b), o*(a) and 7,(a, b) when b is not an

b 0 0.1 0.2 0.3 0.4
c(1, b) 2.5066 2.5066 2.5066 2.5066 2.5066
u(l, b) 0 0.1 0.2 0.3 0.4
o2(1, b) 1 1 1 1 1
y;(1, b) 0 0.0000008 | 0.0000013 0.0000012 0.000001
b 0.5 0.6 0.7 0.38 0.9
c(1, b) 2.5066 2.5066 2.5066 2.5066 2.6066
u(l, b) 0.5 0.6 0.7 0.8 0.9
62(1, b) 1 1 1 1 1
v, b) 0 —0.0000012 | ~0.0000017 -0.0000012| -0.0000009
b 0 0.1 0.2 0.3 0.4
¢(0.1, b) 1 0.60653 0.13534 0.01111 0.00034
1(0.1, b) 0 0 0 0 0.00005
62(0.1, b) 0 0 0 0 0.000045
11(0.1, b) o | 485164256 | 3269023 | 22026 148
b 0.5 0.6 0.7 0.8 0.9
(0.1, b) 0.00001 | 0.00034 0.01111 0.13534 0.60653
1(0.1, b) 0.5 0.99995 1 1 1
5201, b) | 0-250000| 0.00005 0 0 0
11(0.1, ) 0 ~148 90026 | —3269024 | 485164224
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Figure 1. Values for ¢(a, b) when b is an integer.
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Figure 2. Values for o2(a, b) when b is an integer.
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Table 8. Distribution function F(x, a) for the discrete normal (b = 0)

xjla=01]a=02]c=03la=04 a=05la=061a=07 a=08|a=08
0 | 1.0000 | 1.0000 | 0.99816 0.95961 | 0.89329 | 0.83191 | 0.78492 0.74934 | 0.72163
1 1.0000 | 1.0000 |0.99974] 0.99743 0.99032 | 0.97765 1 0.96074
2 1.0000 | 1.0000 | 0.99994 0.99956 | 0.99826
3 1.0000 | 1.0000 | 0.99998
4 1.0000
a=1 a=2 | a=3 ]| a=4 | a=5 | a=6 a=7 | a=8 1 a=9
0 |0.69947} 0.59974 ] 0.56649 0.54987 | 0.53990 § 0.53327 | 0.52859 0.52519 | 0.52268
1 |0.94144|0.77577 | 0.69228 0.64653 | 0.61811/ 0.59888 | 0.538520 0.57519{ 0.56773
2 10.99543 0.89675 0.79877 | 0.73455 | 0.68176 0.66182 | 0.64009 | 0.62403 | 0.61200
3 10.99986]0.96151 | 0.87942 0.80984 | 0.75841 | 0.72053 0.69226 | 0.67100 | 0.65491
4 | 1.00000 | 0.98851 | 0.93409 0.87033 | 0.81635 | 0.77381 0.74083 | 0.71547 | 0.69600
5. 0.99727 1 0.96725 | 0.91599 0.86475 | 0.82082 ] 0.78514 0.75691 | 0.73487
6 0.99949 | 0.98525 | 0.94837 0.90359 | 0.86117 | 0.82475 0.79495] 0.77118
7 0.99992 | 0.99399 | 0.96994 0.03353 | 0.89486 | 0.85943 0.82931 | 0.80470
8 0.99999 | 0.99779 | 0.98344 0.95572 | 0.92221{ 0.88919 0.85987 | 0.83525
9 1.00000 | 0.99927 | 0.99137 | 0.97151 0.94381 | 0.91421 | 0.88664 | 0.86276
10 0.99978 | 0.99575 | 0.98231 0.96040 | 0.93483 { 0.90971 | 0.88723
11 0.99994 | 0.99803 | 0.98940 | 0.97280 0.95146 | 0.92928 | 0.90872
12 0.99999 | 0.99914 { 0.99388 0.98180 | 0.96462 | 0.94564 | 0.92736
13 1.00000 | 0.99964 | 0.99660 0.98816 | 0.97481 | 0.95910 0.94334
14 0.99986 | 0.99818 0.99254 0.98255 { 0.97000 | 0.95687
15 0.99995 | 0.99907 | 0.99546 | 0.98831 0.97869 1 0.96818
16 0.99998 | 0.99955 | 0.99736 | 0.99251 0.98550 | 0.97752
17 0.99999 | 0.99979 | 0.99856 | 0.89550 0.99077 | 0.98514
18 1.00000 | 0.99991 | 0.99930 | 0.99760 0.99478} 0.99128
19 0.99997 1 0.99974 | 0.99903 0.99779 | 0.99616
20 1.00000 | 1.00000 | 1.00000 | 1.00000 1.00000
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Remark 3. Note that, in Table 3, we can use that
1. F{x, a) = F(-x -1, a)
2. F(x, a, b) = F(x — b, ) when b is an integer
3. | F(x, a, b) - F(lx - b], a}| < 0.04 when b ~[]205and a >5

4. | F(x, a,b)- F([x-b]+1, a)|< 0.04 when b—[b]< 0.5 and a > 5.

04

03 —

p)

G2

01

06 "R S T I | J | I T T B
T T T T T
-8 -4 ¢] 4 8

Figure 3. Values for p(x) in a standard discrete normal.

4. Approaching Distributions

First, we show that the discrete normal distribution can be used to
approach the continuous normal distribution and vice versa, with a

continuity correction.
Proposition 8. If X is a discrete normal N(g, b) defined by (2) and Y

is a continuous normal N(u = b, ¢ = a), then

lim | Fx (x, @, b) - Fy(x + 0.5, a, b)|=0

a—r«0

for all integers x. If a 21, then Fy(x, a, b)=Fy(x + 05, a, b) with a
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maximum difference

in the next table the distribution functions for both st

| Fy (x, a, b) - Fy(x + 05, a, b)| < 0.01072. We show

andard normal

distributions.
X 0 1 2 3 4 MaxDif
Fy (x, 1, 0) 0.68947 0.94144 0.99543 0.99986 1.00000 0.00825
Fy{x + 0.5 L 0) 0.69146 (.93319 0.89379 0.999717 1.00000 -

Thus, we can also use the discrete normal distribution to anproach

other distributions (Binomial, Poisson, Negative B

example, if we approach a Binomia

discrete normal X = N(a = 2.73, b = 15), we obtain

inomial, etc.). For
1 Y = B(n = 30, p=0.5) using a

x 15 16 17 18 19 20
py(x) | 0.145673 0.136278 | 0.111575 | 0.079947 | 0.050134 0.027514
py(x) 0.144464 | 0.135435 | 0.111535 | 0.080553 0.050876 | 0.027982

X 21 22 23 24 25 MaxDif
px(x) | 0.013215 0.005555 | 0.002044 | 0.000658 | 0.000185 0.001209
py(x) 0.013325 | 0.005451 | 0.001896 | 0.000553 0.000133 -

In this way, we have obtained the following result.

Proposition 9. If X has px

distribution with py(x, M) = e M [x!, then

lim
A—ron

px(k+m,a=ﬁ,b:l)_1

py(x +m, &)

nhore m. is a fixed integer (it does not depend on 1),

(x, a, b) equal to (2) and Y has a Poisson
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Proof. From the definitions, we have

2
px(A+m, a= Jr, b= 1) - lim ere P (A £ m)!

lim
Ao Py (A+m, 1) A 300 fomaltm
which, using Stirling’s formula, is equal to
-m= 2\
lim (A +m) (k+1)__1
A YNk

In Tables 4 and 5, we give the maximum differences between some
discrete probability mass functions (p(x)) and the corresponding discrete

normal probability mass functions.

Table 4. Maximum differences between the diserete normal and Poisson

P(3) and Binomial B(n, p) pmfs

P(.)| MaxDif }B(n, p) MaxDif n MaxDif npg|  MaxDif
3, P n =30 p =05 p>0.01
p < 0.99

05| 0.167139 | 0.01 0.110586 | 1 0.0160584 1] 0.122821
1 | 0.125909 | 0.02 0.162418 | 2 0.0641898 2 | 0.050439
1.5 ] 0.069264 | 0.03 0.132518 | 3 0.0222131 3| 0.029743
2 | 0.060975 | 0.04 0.094906 | 5 0.0111758 4 | 0.024655
5 | 0.020780 | 0.05 0.062885 | 7 0.0073451 |} 5 0.020209
7 | 0.014404 | 0.07 0.046569 | 10| 0.0062196 6 | 0.016791
10 | 0.009638 | O.1 0.025911 | 15| 0.0028785 7 0.014186
15 | 0.006550 | 0.2 0.012480 |20 0.0022154 8 | 0.012175
20 | 0.004764 | 0.3 0.006144 |25 0.0014361 9 { 0.010593
30 | 0.003181 | 04 0.002694 {30| 0.0012087 10} 0.009326
50 | 0.001887 | 0.5 0.001209 |50| 0.0005628 |20| 0.004710
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Table 5. Maximum differences between the discrete normal and Negative

Binomial NB(n, p) pmfs

p MaxDif MaxDif n MaxDif K MaxDif MaxDif
n==5 n=10 p=035 n=>5 =1
0.1 0.005179 0.002338 2 0.128015 0.6 0.192348 0.276727
0.2 0.011053 0.004984 3 0.070800 1 0.161793 0.280304
0.3 0.017702 0.008077 4 0.046402 2 0.069221 0.216634
0.4 0.026440 0.011891 5 0.036746 3 0.058772 0.170848
0.5 0.036746 0.016574 6 0.030223 5 0.036746 0.118650
0.6 0.051829 0.023770 7 0.025226 7.5 0.026440 0.085505
0.7 0.067895 0.034533 8 0.021395 10 0.020265 0.066765
0.8 0.134103 0.057300 g 0.018412 20 0.011053 0.035528
0.9 0.195038 0.130805 10 0.016574 40 0.005793 0.018342

Note that to have a maximum difference smaller than 0.05, we can
approach a Poisson with a mean bigger than 2, a Binomial, with npg > 2

and 0.01 < p<0.99, a Geometric with a mean bigger than 10 and a

Negative Binomial with a mean bigger than 5 and n > 5. Similar

differences can be obtained using the distribution functions.
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